2024-12-23 05:47:46
来源:必一体育下载 作者:必一体育app械设备、粉磨机械设备、烧成机械设备、烘干机械设备、起重运输机械设备、包装、散装机械设备、环保设备、分级设备、加料计量设备等。
选择设备的原则是:“技术先进、经济合理、生产适用、维护方便”。在选择设备的型号、规格时应注意以下几点:
(1)选用设备要根据企业经济实力确定,一般情况下,其型号、规格,首先立足国内,然后再考虑从国外引进;
在购买设备时支付的第一次投资费用,应考虑价格合理、尽量节约资金。同时应注意:相同型号看价格、相同价格看产地、相同产地看名牌,不能单纯追求“便宜”。
(1)新工人进厂或在使用新型号设备前都要进行“教育”。即:企业(厂级)教育、车间教育和班组教育。企业教育的主要内容为设备的安全操作规程;车间教育与班组教育的主要内容是贯彻落实交制度和设备保养负责制。通过“教育”实现操作者的“三好”“四会”和“四项要求”,明确使用设备的各项要求和规定。
对操作者经过培训后,需进行必要的考核,经有关部门鉴定,认为合格时即发给设备操作证,作为独立使用某一型号设备的证明文件。
操作工必须每班按照规定对设备进行的例行保养。主要目的是减少设备磨损,延长使用寿命、防止事故、保证设备的正常运转,使设备经常处于完好状态。这种保养,一般规定每班占用10~15分钟定时进行。企业可根据具体情况,订出设备日常保养的检查评比制度、内容和方法。
建立设备档案的目的是:积累设备在各种情况下的基本资料,探索设备技术状况变化和零部件的磨损规律,改善设备维护和修理,研究和制定设备技术改造和更新换代的计划与措施。
水泥生产使用的物料,大部分是各种矿物晶体或质点的结合体。按理想晶体结构分类,有离子结构、分子结构和原子结构。其中以离子结构的矿物最多,属中硬性物料。当晶体受到外力作用时,如果是压缩,斥力的增大超过引力的增大,剩余的斥力支撑外力的压迫;如果是拉伸,引力的减少少于斥力的减少,多余的引力抗御着外力的拆散作用。
质点间的平衡力是有限的,当外力再增加,晶体终于不住外力的作用,晶体结构发生破坏、断裂,产生永久性变形,即:物料被粉碎。
强度是物料抗破坏的能力,一般用破坏应力表示,按破坏时外力的作用方式,可分为:抗压、抗折、抗弯、抗剪、抗拉强度等。
非金属材料一般用莫氏(Moh)相对硬度表示,分为十个等级,用刻痕法测定。金刚石为10、最硬;滑石为1、最软。硬度数值表示法,一般用于金属材料,如:布氏硬度(HB)、洛氏硬度(HRC)、维氏硬度(HV)、肖氏硬度(HS)等。
脆性是表示物料被断裂的性能,与其相对应的性质称为:韧性。韧性是表示物料抗断裂的能力。脆性高的物料,韧性小,容易断裂、粉碎;脆性低的物料,韧性大,不易断裂、难于粉碎。
(1)易碎性: 物料被破碎的难易程度,称之为:易碎性。易碎性的好、坏,与物料本身的强度、硬度、密度、晶体结构、裂纹、含水量、脆性等有关。物料的易碎性常用相对易碎性系数表示。它是以标准物料单位产量的电耗为基准,做相对比较而得出来的。计算式如下:
相对易碎性系数的测定方法,目前国家没有明确规定。各企业可以自行选定标准物料来测定自己需要测定的物料的相对易碎系数,科学地进行破碎工艺过程的生产控制。
值得注意的是:被测物料与标准物料的破碎条件一定要相同。主要是指,要使用同一台进行试验;入的物料粒度和出的产品粒度一定要尽量接近。这样测得的单位产量电耗才有可以代入公式计算。
标准物料的相对易碎性系数为1,被测物料的相对易碎性系数如果大于1,说明其易碎性好,比标准物料容易破碎;反之,小于1,则易碎性不好,比标准物料难于破碎。
物料被粉磨的难易程度称之为:易磨性。影响易磨性好坏的因素与易碎性相同,但二者没有明显的规律关系。一般情况下,易碎性好的物料易磨性也好;但是,在水泥生产中,也经常有一些易碎性好的物料,其易磨性并不好。
易磨性的好坏以易磨性系数表示,其测定方法,已有国家标准《水泥原料易磨性试验方法》(GB9964-88)和建材行业标准(JC/T734-1996)都做出了明确规定。
粉磨功指数的物理意义是:被测物料从理论入磨粒度粉磨为成品时,所需要消耗的能量。其数值越大,物料越难磨。反之,数值越小,物料越好磨。这恰好与相对易碎性系数相反,应用时要注意。
在水泥生产过程中,无论是原料、燃料、生料、熟料、水泥等,都是由大小不同的块状、粒状、粉状颗粒组成。为了表示它们的外形尺寸大小,我们经常使用“粒度”或“细度”这两个术语。这两个名词没有明显区别,只是大家习惯对块状和粒状物料称为“粒度”;而将粉状物料称为“细度”。具体的表示方法常见四种:
在水泥生产过程中,对粉碎产品的颗粒组成也可以用筛析法进行测试处理,简单方便地将颗粒群分成几个不同的级别,然后作出他们的坐标图形,这种图形称为:粉碎产品粒度特征曲线;简称为:筛析曲线。利用它可以对粉碎过程进行产品分析和生产控制。
用套筛筛析物料时,大孔筛的筛余是小孔筛筛余的一部分,计算小孔筛的筛余时应该将其累计在一起,这才是小孔筛的真实筛余,也称其为筛余累计。它一般用百分数表示,在水泥行业内也常常将其简称为:筛余。
(1)查算某一粒径范围颗粒群含量:筛析曲线作好后,从横坐标上任取一点筛孔尺寸,它的筛余求法就是从这一点出发,向上垂直引线,与曲线相交,从交点,再水平引线与纵坐标相交,交点数值就是该筛孔尺寸的筛余。用此方法,求出两个筛孔尺寸的筛余,进行相减,其差质就是这个区间尺寸范围颗粒的百分含量。
(2)判断粉碎设备的工作性能:一台粉碎机粉碎几种物料,他们的筛析曲线可能出现的是三种形状(见右图):凹形、凸形或直线形。凹形表示粉碎产品中细颗粒含量较多,粗颗粒含量较少;凸形表示产品中粗颗粒含量较多,细颗粒含量较少;直线形表示产品中,粗、细颗粒含量相差无几。如果是几台粉碎机粉碎一种物料,产品粒度特征曲线也会出现三种情况:凹形、凸形或直线形。出现凹形的粉碎机,表示其粉碎产品中细颗粒含量较多,粗颗粒含量较少;出现凸形的粉碎机,表示其产品中粗颗粒含量较多,细颗粒含量较少;出现直线形的粉碎机,表示其产品中,粗、细颗粒含量接近。
工业粉碎用的物料,来自天然矿山、井下的开采或工业生产的过程,它们内部本身都存在着许多的局部薄弱面(如:不均质性的解理面、微细裂纹等)。在外力作用时,由于这些局部薄弱面的作用,使其周围产生应力集中,外力增加,应力集中将更大,解理加剧、裂纹扩展开始,必然导致物料的破坏。实际上强度值是随被粉碎物料的形状、大小变化而变化的,物料粒度越小,强度值显著增大。因为物料越大,其不均质性也越大。
在物料中的各组份对强度的作用不是叠加的,也不是各组份的平均值,而是最小值。极少量的薄弱部位决定了物料整体的物理性质。
粉碎过程是一个外力做功的过程,物料颗粒粒径的减小与能量消耗之间存在着一个什么样的关系?一直是粉碎理论研究的焦点。一百多年来,许多学者曾提出过一些推力精辟的理论。虽然这些学说都是从一些不切合实际的假设开始,但他们最终研究的结果,在某一个方面对生产实践却具有相当大的适用价值。
1867年雷廷智(P.R.Von Rittinger)提出,粉碎过程是物料由大球形变为小球形的过程,粉碎过程的能耗与物料表面积的增加成正比。
1885年基克(F.Kick)提出,物料粉碎过程,是由一个大圆柱体受到挤压力的作用,在其内部引起应力和产生应变,应力达到极限,导致物料破坏,变成形状相似的小圆柱体,同时每次的粉碎比都相同,粉碎所消耗的能量与物料的体积或质量的减小成正比。
1952年邦德(F.C.Bond)提出,物料粉碎的过程,是一个大正方体在受压的情况下,积累一定的能量后产生了裂纹,由于裂纹的扩展,纵横交错,形成一堆大小相同的小正方体,最后才被粉碎。粉碎所消耗的能量与正方体的边长(颗粒平均粒径)的平方根成反比。
粉碎机械化学,它泛指机械运动能量与化学能量的相互转化。它研究固体物料在施加冲击、剪切、摩檫、压缩、延伸等机械力作用后,其内部晶体结构会不规则化和产生多相晶型转变,导致晶格缺陷发生、比表面积增大、表面能增加等,随之物料的热力学性质、结晶学性质、物理化学性质等都会发生规律性变化。
机械粉碎是采用机械能使物料由大颗粒变成小颗粒的工艺过程。在粒径减小的同时,自身的晶体结构、化学组成、物理化学性质等,都会发生机械化学变化。这些变化并非在所有的粉碎作业中都能显著存在,它与机械力的施加方式、粉碎时间、粉碎环境以及被粉碎物料的种类、粒度、物理化学性质等,都有密切的关系。
在水泥生产中,粉碎机械化学的应用研究越来越深入。它是“物理激发”技术的理论根据。如:如何进一步提高水泥或活性混合材的比表面积,以增进或提高其水化反应活性、强度等级、及使用性能等等。[page
球磨机是一种以研磨体(钢球、钢段等)在回转的筒体内对物料进行粉碎的重要粉磨设备。为了确定其机械设计制造的计算依据和它工作时的主要技术参数,必须对动态研磨体的运动规律作详细地分析。研究者作出了如下假设,使研究内容的复杂程度得到了简化。
(3)当磨机正常运转时,研磨体在磨机筒体内,按其所在位置一层一层地进行连续循环运动,且各层研磨体在循环运动中互不干扰;
(4)研磨体在筒体内循环运动的轨迹是由两种曲线封闭组成,一种是以筒体断面中心为圆心向上运动的同心圆弧;另一种是向下运动的抛物线.球磨机粉磨动力学理论
为了控制物料在球磨机内的粉磨过程、选择球磨机最佳工作条件,必须要掌握在整个粉磨过程中,随时间的增加,磨内物料粒度减小的情况。这就是粉磨速度问题,即:粉磨动力学理论。某一粗粒级含量的减少速度与该瞬间球磨机中未磨好的粗粒级含量成正比。其数学表达式如下:
粉磨速度常数,与粉磨条件有关;“-”负号表示R随时间增加而减少。1954年高登(A.M.Gaudin)、巴斯(L.Bass)等人导出了一个新的粉磨动力学的数学模型,也被业内人士称之为:现代粉磨动力学数学表达式,并应用于工业生产指导工作。
在整个粉磨过程中,粒度i增加的速率必须等于所有大颗粒产生的粒度i的总量,减去粒度i粉碎成较小颗粒的速率。
在械中,我们经常看到机械力直接作用于物料将其粉碎;然而在粉磨设备中,物料被粉碎的现象却不一样,它是以一种物料床层(颗粒群)的堆积方式来接受外力,直接受外力作用的颗粒很少,大部分是通过颗粒之间的传递、或相互作用受应力集中而被粉碎、破。